[docs]classSession(object):""" Stores information about bpod run, including the list of trials. """
[docs]def__init__(self,path=None):self.ostdout=sys.stdoutself.ostderr=sys.stderr# the variable will contain a list of streams where the session output# should be written.streams=[]self.history=[]self.trials=[]self.firmware_version=Noneself.bpod_version=Noneself.start_timestamp=datetime_now.now()self.csvwriter=Noneself._path=path# stream data to a file.ifpath:streams+=[open(path,"w")]self.csvstream=StreamsWrapper(streams)self.csvwriter=csv.Writer(self.csvstream,columns_headers=["TRIAL","START","END","MSG","VALUE"],)
def__del__(self):self.csvstream.close()sys.stdout=self.ostdoutsys.stderr=self.ostderrdef__add__(self,msg):""" Add new trial to this session and associate a state machine to it :param pybpodapi.model.state_machine sma: state machine associated with this trial """ifisinstance(msg,Trial):self.trials.append(msg)elifself.current_trialisnotNone:self.current_trial+=msgself.history.append(msg)ifself.csvwriter:ifmsg.MESSAGE_TYPE_ALIAS=="VAL":ifmsg.content=="TRIAL":time0=self.current_trial.trial_start_timestamptime1=(self.current_trial.trial_end_timestamp-self.current_trial.difference)self.csvwriter.writerow([len(self.trials)]+[time0,time1]+msg.tolist())self.csvwriter.flush()else:self.csvwriter.writerow([len(self.trials)]+[None]+msg.tolist())self.csvwriter.flush()elifmsg.MESSAGE_TYPE_ALIASin{"INFO","TRIAL","END-TRIAL","stdout","stderr",}:passelse:self.csvwriter.writerow([len(self.trials)]+msg.tolist())self.csvwriter.flush()returnselfdefadd_trial_events(self):current_trial=self.current_trial# type: Trialsma=current_trial.smavisitedStates=[0]*current_trial.sma.total_states_added# determine unique states while preserving visited orderuniqueStates=[]nUniqueStates=0uniqueStateIndexes=[0]*len(current_trial.states)foriinrange(len(current_trial.states)):ifcurrent_trial.states[i]inuniqueStates:uniqueStateIndexes[i]=uniqueStates.index(current_trial.states[i])else:uniqueStateIndexes[i]=nUniqueStatesnUniqueStates+=1uniqueStates.append(current_trial.states[i])visitedStates[current_trial.states[i]]=1# Create a 2-d matrix for each state in a listuniqueStateDataMatrices=[[]foriinrange(len(current_trial.states))]# Append one matrix for each unique stateforiinrange(len(current_trial.states)):iflen(current_trial.state_timestamps)>1:uniqueStateDataMatrices[uniqueStateIndexes[i]]+=[(current_trial.state_timestamps[i]+current_trial.trial_start_timestamp,current_trial.state_timestamps[i+1]+current_trial.trial_start_timestamp,)]foriinrange(nUniqueStates):thisStateName=sma.state_names[uniqueStates[i]]forstate_durinuniqueStateDataMatrices[i]:self+=StateOccurrence(thisStateName,state_dur[0],state_dur[1])logger.debug("State names: %s",sma.state_names)logger.debug("nPossibleStates: %s",sma.total_states_added)foriinrange(sma.total_states_added):thisStateName=sma.state_names[i]ifnotvisitedStates[i]:self+=StateOccurrence(thisStateName,float("NaN"),float("NaN"))logger.debug("Trial states: %s",[str(state)forstateincurrent_trial.states_occurrences],)# save events occurrences on trial# current_trial.events_occurrences = sma.raw_data.events_occurrenceslogger.debug("Trial events: %s",[str(event)foreventincurrent_trial.events_occurrences],)logger.debug("Trial info: %s",str(current_trial))@propertydefcurrent_trial(self):""" Get current trial :rtype: Trial """returnself.trials[-1]iflen(self.trials)>0elseNone@current_trial.setterdefcurrent_trial(self,value):""" Get current trial :rtype: Trial """self.trials[-1]=value